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ABSTRACT

Papers and reports published up to the middle of 1968

in the open literature
of approach. They are
upon. General trends,

and contradictions are

are classified by subject and type
analyzed, discussed and commented
relations between studies, agreements

mentioned.
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INTRODUCTION

Until modern times the oceans were of interest to man only as a
source of food and as a medium that linked and separated the
continents. The catching of fish, the transport of goods from
one harbour to another, and the sea battles between warring
nations, all these took place at the surface. Therefore little

interest was shown in the ocean below the surface.

Recent times have seen the development of submarines, giving the
war at sea one more dimension, and the increasing need of food
for a growing world population, which makes more efficient fishing

necessary.

Connected with this development is a diversity of technical

systems that operate with underwater sound waves and are used for
detecting an enemy (active and passive sonar), distinguishing
friend from foe (IFF systems), tracing schools of fish, or measuring
depth (fathometry).

There is at least one thing all these systems have in common: they
can be considered as communication systems, since each one has a

transmitter and a receiver, between which information is conveyed,

The medium that is used in these communication systems to carry the
information from transmitter to receiver, i.e. the ocean. is

certainly not perfect.

In the first place there is the phenomenon of a sound velocity
changing with depth, that causes the formation of sound channels,

caustics, shadow zones, etc.

Next there is the so-called volume reverberation, introduced by
inhomogeneities in the medium (e.g. fluctuations in temnerature.
salinity, pressurs,and small particles of biological nature). that
influences the signals all along their prupagation path and

disturbs them in a random fashion.

Mureover, in many situations there is not only a direct path
between transmitter and receiver, but also conncction via the

boundaries, especially at longer distances.

s
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The signals that arrive at the receiver via these different paths
may interfere or may be separated in time, depending on the
geometry and the signal duration. If they interfere then one will
probably try to build into the receiver a means of separating them.
In the second case it is likely that the direct arrival will be
given priority, as it carries the least disturbed information.

Then the receiver will have to suppress the superfluous boundary-
reflected signals, because their presence makes the system

temporarily unusable for direct reception.

It is also possible to imagine a situation in which communication
between transmitter and receiver can only take place via the
bottom, or via the surface., This occurs when the receiver is

positioned in the shadow zone of the transmitter.

From the above it can be concluded that it is essential for the
designer of underwater communication systems to know how the
propagation of sound is affected by the medium and its boundaries.

A study of this effect can be split into three parts:

a) The volume.
b) The surface,
c) The bottom.

In this report we shall only be concerned with the surface effect.

As a first step in the study of "Reflection and Scattering of Sound
Waves at the Sea Surface" it seems reasonable to investigate what
work has been done in this field up to the present. The present

literature survey is the result of this investigation.
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1. GENERAL REMARKS

1.1 Definitions and Limitation of the Material

The problem of the diffraction of waves at uneven surfaces has

received increasing attention in the past fifteen years; "this
is due to the growing application of acoustic waves and radio waves in the

centimstre band" (Ref. 45, p. 1).

Often diffraction is subdivided into "reflection" and ‘'scattering",
but these terms are not always distinguished clearly in the
literature, In this work we shall call "reflection" that part of
the diffracted field that travels in the specular direction

(often named "specular reflection"). Waves in all other directions
will be called "scattered waves" or simply "scattering". Scattering
back towards the transmitter (backscattering) is also called

"reverberation".

Mathematically the problem is "marvelously complex" (Ref. 76, p. 1293).
It consists in solving a wave equation for which certain boundary
conditions have to be satisfied, whereas the shape of the boundary
can be extremely complicated. For this reason a general and exact

treatment of the problem has not — so far — been published.

Nevertheless, a large number of publications in the open literature
are devoted to the subject. But they only cover a part of the
problem: all of them are restricted to a special case, and are based
on certain assumptions — sometimes rather arbitrary — that make
simplifications possible but at the same time cast doubt on their

validity. Moreover they all deal with monochromatic waves.

The material can be limited if we consider the type of wave and the
type of boundary. Both sound waves and electromagnetic waves

(e.m. waves) give rise to the same type of mathematics, when
reflection and scattering at uneven surfaces is studied. In fact,
the mathematical formulation for sound waves can be considered as a
simplified version of the one for e.m. waves, because for sound

waves the vector equations are reduced to scalar equations. This

is caused by the fact thau sound waves do not possess the polarization

that is inherent in e.m. waves,

el
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Next, two types of boundary can be distinguished in practice, with

some idealization:

a. The free, elastic boundary (e.g. the sea surface) on
which the wave potential vanishes (homogeneous Dirichlet condition),
i.e. the so called "pressure release" or "perfectly conducting"

surface,

b. The rigid boundary (e.g. the rocky ocean floor) on

which the first derivative of the wave potential becomes zero.

Except for the book by Beckmann and Spizzichino (Ref. 2), we shall
only refer here to publications that deal with sound waves and
perfectly reflecting, free boundaries; we do not, however, attempt

to give a complete bibliography.

1.2 Sound Pressure and Velocity Potential

The terms "sound pressure" and "velocity potential" need some
attention, as the way they are used in the literature may cause

confusion.

The sound waves we are interested in are pressure waves: they can
he described as a pressure field p that varies with time and
position. Closely related to the field p is the wave velocity

potential field u , as

oD, du , (Eq. 1)
dt

where p is the mean density of the medium.
0

For monochromatic waves we have

u = ]u| e tut (Eq. 2)
so that Equation 1 reduces to
P iwpou. (Eq. 3)
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3 It is this relation, only valid for monochromatic waves, that makes

H u and p interchangeable in the wave equation, in the boundary
conditions, in the Helmholtz integral, and in all relations derived
from them.

10
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2. CLASSIFICATION OF THE LITERATURE

The diversity of special cases makes a classification of the
existing literature rather difficult. However, an evaluation of
the most pertinent material can be attempted by classifying each
reference according to whether or not it treats of certain
aspects of the subject. Such a classification is attempted in
Table 1. It is reviewed in Chapters 3 & 4 and conclusions are

drawn in Chapter 5.
The division of the subject into different aspects is discussed

in the remainder of the present chapter. The numbers and letters

in Table 1 correspond to these divisions.

A, TYPE OF INCIDENT WAVE

A.1 Plane Waves

Directions appear instead of vectors, and all surface points are
equally distant from the source. Considerable simplifications

“an be obtained, at the cost of loss of generality.

A.2 Spherical Waves

The source is of finite dimensions (in the limiting case a point
source) at a finite distance from the boundary. This case is

more realistic and more complicated.

B, TYPE OF SOURCE

B.1 Source with Directivity

Radiaticn takes place only inside a limited space angle, which

restricts the active scattering area,

B.2 Omnidirectional Source

In experimental work this type of (point) cource is usually
obtained with explosives. In thcoretical studies the active surface

region becomes infinitely large, causing mathematical difficulties.

“ppe 20-22 11

R




C. DIMENSION OF THE MODEL

This criterion has only meaning for theoretical work.

C.1 Two-Dimensional Model

In many cases the analysis is limited to the “plane problem"
(Ref. 45, p. 1). This means that the boundary is considered
to be a function of only one space variable, so that the
"surface" can be represented by a curve z = ( (x). It is
obvious that such models lack general validity: they are to

be considered as a first step to gain insight.

C.2 Three-Dimensional Model

Especially in the case of point sources and point receivers

it is highly desirable to represent the boundary by a function
z = (x, y). In principle the three-dimensional model can

be obtained from the two-dimensional one, at the cost of more

complicated expressions.

D. TYPE OF MODEL

The models used in the literature can all be characterized as
"whysical" models, with one exception: the "quasi-phenomeno-
logical" approach of Middleton (Refs. 59, 60), In the physical
models the inhomogeneity of the boundary is present in the
formulation of the problem from the beginning, i.e. a solution of
the wave equation is sought that satisfies certain boundary
conditions. The phenomenological type assumes an ideal boundary
and ideal wave propagation, and introduces the irregularities
independently of the boundary as point scatterers with certain
statistical properties. It is there that the difficulty of the
method lies, for these properties are not easy to ohtain, We

shall therefore give most attention tc the physical models,

An excellent survey of the models used up to 1958 has been given
by Lysanov (Ref. 45). Although his paper deals only with
periodically uneven surfaces, it has a wider importance, because
many models can be applied to both periodically and statistically
uneven surfaces, He described six methods of attacking the plane

12
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problem, both for free and rigid bkoundaries, discussed their
validity regions, and gave an extensive list of references from
both Soviet and Western authors. The existence of a rather

large number of theoretical models is due to the fact that the
boundary conditions are difficult to incorporate in an exact way.
This difficulty is caused by the complexity of the boundary.

Some more or less arbitrary assumption has to be made in order to
obtain a tractable approach. As for the assumption made, there

are essentially two possibilities:

a, The diffracted field is assumed to have a certain
structure (e.g. it is expandable in a series of plane waves:
Rayleigh Method), after which the parameters are calculated via

the boundary condition.

b. An assumption about the boundary condition is made,
after which the field is calculated, mostly via the Helml.olt:z
Integral (Ref. 1).

More or less parallel to this division runs the division into plane
wave and spherical wave models. But this distinction is rather
artificial, ~ince it is possible to use a plane wave model, which

only deals with directions, for the case of point sources and

receivers, "by selecting the set of appropriate directions" (u.=f. 11, p. 5).

The plane wave models use the methods D.1 to D.5. The spherical
wave models all start with the well known Helmholtz Integral
(Ref. 1) and then use either method D.6 or D.7 to approximate
the first derivative of the field at the boundary needed to

evaluate the integral.

D.1 The Method of Small Perturbations*

The boundary conditions on z = ( (x) are transferrec to z =0
by means of a series expansion in (. The results are identical

to those of D.3, when applied to periodic surfaces.

*From: Lysanov (Ref. 45).

13
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D.2 Brekhovskikh's Method*

This approach is meant for relatively smooth surfaces that can
be considered to be "locally flat", The amplitude of the

irregularities may be large.

D.3 Rayleigh's Method

In this method the assumption is made that the scattered field

can be represented everywhere by an infinite series of undamped
plane waves.

The model was developed for a periodic boundary (see Section 3.2.1),
but Marsh has generalized it for random surfaces (see Section 3.2.2).
The validity of the basic assumption has been questioned by many
authors (see Section 3.2.3), leading to improved versions of the
Rayleigh method (e.g. D.4, D.5).

D.4 Variational Method

This method, developed by Meecham (Ref. 57), is an improvement of
the Rayleigh approach., It calculates more accurately than
Rayleigh the first N coefficientsof the series, by an error-

minimizing procedure,

D.5 Uretsky's Mevhod

Being one of Rayleigh's critics, Uretsky has developed a modified
version of the Rayleigh method, in which the wave equation is
converted into an integral equation via a Green's function

(Refs. 76, 77).

(See Section 3.2.4 for a summary of the method.)

D.6 Kirchhoff's Approximation

This method is also called "method of physical optics" (Ref. 2, p. 6).
It is assumed that at the boundary the first derivative is equal
for the incident wave and for the diffracted wave. This Kirchhoff

approximation is somewhat arbitrary, as has been pointed out by

*From: Lysanov (Ref. 45).

14
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Mintzer (Ref. 61), and is therefore also encountered in a modified
form (Ref. 38). But in all cases the assumptions made leave the

approximation open to discussion.

D.7 Integral Equation Method

The first derivative of the reflected field at the boundary is
estimated via a Fourier integral, which is obtained assuming a
receiver at the boundary. The method is therefore also called
Fourier Transform Method:; it is introduced by Meecham (Ref. 58)
and described independently by Lysanov in his dissertation
(see Ref. 45, p. 4).

£

D.8 Other Models

A model based on a different philcsophy was prepared by Middleton
(Refs. 59, 60). Instead of the classical or "physical" approach
(as used in D.1 - D.7), he used a "gyuasi-phenomenological®
approach in which the surface roughness is introduced as a

-andom distribution of point scatterers on a perfectly flat
boundary. (See Section 3.4 for details.) Still other models that
do not fit in the foregoing scheme can be found in Beck..ann's
book (Ref. 2). Some of them are non-Kirchhoff methods.

E. TYPE Of SURFACE

Three types of boundaries can be distinguished, ranging from a
pour approximatiun of the true ocean surfice to a more realistic

one:

E.1 Periodic Surfaces with Deterministic Profile

This type of boundary can be described exactly without invoking
probability theory. A rigorous treatment of the problem is
possible, mostly involving the (Rayleigh) expansion of the

reflected field into an infinite set of plane waves,

15
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E.2 Periodic Surfaces with Randem Profile

For this type, probability theory is needed. The spatial

correlation function of the surface elevation is periodic.

E.3 Random Surfaces

In this case the surface elevation and the slopes are considered
to be stationary Gaussian processes, This is done primarily
because only then can the analysis be continued up to a level
where some conclusions can be drawn. Fortunately measurements
at sea of elevation and slope have shown that the assumption of

a "Gaussian sea" is satisfactory in most cases (Refs. 4, 24).

F. TIME

F.1 Time-Independent Surfaces

The larger part of the papers assume for simplicity a surface

that does not depend on time.,

F.2 Time-Variant Surfaces

More realistic is a surface of the type z = (¢ (x, y; t). Then
phencmena like Doppler-effect and frequency smear can be studied.

G. RELATIVE ROUGHNESS

Only in papers .. a very theoretical character is there no
statement about the relative size of the irregularities with
respect to the wave length of the incident radiation. In others

a "roughness parameter" appears, very often formulated via the
Rayleigh criteerion of roughness. This roughness parameter y is
proportional to the ratio h/\, vhere h is the surface amplitude
or the standard deviation of the surface elevation and )\ the
wavelength of the incident radiation. Then one or both of the

following possibilities are considered:

16
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G.1 Rough Boundaries ;
If the correlation between the elevation of neighbouring surface
points is low, the surface is relatively very rough. Shadowing

can occur at lower grazing angles, Scattering is diffuse,

G.2 Smooth Boundaries

Surfaces with good correlation are relatively smooth. Specular

reflection is dominant.

H. THE SUB-SURFACE LAYER

Since the sea surface is the interface between air and water,
both "elements" can mingle to a certain extent under favourable
win'l conditions. In this case the sub-surface layer contains

a large number of small air bubbles that can produce a kind of
volume scattering. In many.cases the effect of this on surface
scattering can be neglected; in certain cases, however (high
wind speed, small grazing angles), the volume effect can
screen the surface effect.

-

H.1 1Ideal Layer

It is assumed that only the boundary causes the scattering and

reflection and that the ocean itself is ideal everywhere.

H.2 Inhomogeneous layer

In theoretical work this type is discussed by Lysanov (Refs. 46, 47).
Many experimenters assume its exirtence in their explanation of

data. The presence of air bubbles below the surface up to a certain

depth, or a layer in which the sound velocity increases linearly

with depth, is assumed.

17
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I. THEORY AND EXPERIMENT

I.1 Theoretical Studies

The papers in this group are of a purely theoretical character,

i.e. without experimental verification of the results obtained.

I.2 Experimental Work

In this grou; the results of experiments, mostly carried out at

sea, are presented.

I.3 Comparison

Several papers start with a theoretical model, which is followed
by a comparison with own data or with data from other publications.

Experimenters may also "borrow" a theoretical model for comparison.

J. MAIN SUBJECT OF THE PUBLICATION

Almost all publications assume the characteristics of the surface
to be known, i.e. they descrvibe the surface with a deterministic

and periodic function, or presuppose the statistical properties of
the boundary. Tlicse publications deal with the following subjects

and quantities, .

J.1 Rigorous Solution of the Wave Equation

In papers of a very theoretical character Rayleigh's expansion of
the fiel', diffracted at a periodic surface or at a random

boundary (Marsh - Ref. 48) into an infinite series of plane waves,
is adopted, with or without modification (Uretsky - Refs. 76, 77 «»
and Meecham - Ref. 57) for the surface "valleys}; the amplitudes

of the waves are calculated. In the case of a random surface this

is done via Wiener's Generalized Harmonic Analysis.

J.2 Amplitudes of the Diffracted Field: Reflection Coefficients

Some model studies have been performed o check the above rigorous
solutions for periodically uneven surfaces, Refl cted and

scattered amplitudes of order zero ( = specular reflection) to

18
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m (m= -1, -2, -3 ..., have been measured (backscattering).

Sometimes the results are normalized to obtain reflection
coefficients. Measurements at sea have also yielded a reflection
coefficient (Refs. 42, 67).

J.3 Second Order Statistical Moments of the Diffracted Field

In this category the following subjects are encountered:

a) Reflected and scattered intensity.

b) Power reflection coefficient.

c) Scattering strength (forward, backward).
d) Scattering cross section.

e) Amplitude and phase fluctuations.

f) Spatial correlation of field amplitudes.
This is the largest group, containing both theoretical and
experimental results. In many cases the dependency on grazing

angle, frequency, or wind speed is investigated.

J.4 "Doppler" and other Frequency Effects

A small number of papers recognize the fact that the surface is
time-variant., Then "Doppler effect" and "frequency smear" are
studied.

J.5 Geometrical Shadowing

A special group of articles is devoted to the shadowing of
surface "valleys" by neighbouring "peaks", which can occur at

high frequencies and small grazing angles.

J.6 The Inverse Problem

This is the casc¢ when the parameters that characterize the surface

2re inf{erred from the properties of the diffracted field,

J.7 Sea Surface Wave Spectrum

The theory of a surface wave spectrum is discussed in papers of more
recent date. This theory provides an estimate of the surface cor-
relation function that is more realistic than the arbitrarily chosen

functions in earlier work.

19
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39 Horton, C.W. et al, 211126 f{3t112]|1}131!3
40 Kur'yanov, B.F. 1 211,6(3|1]2]1]1]|3
41 La Casce, E.0. et al. L2 1 |1 236(1 |1 {L,2f1] 3] 2
42 Liebermann, L.N. 2 |1 B 1312 212
43 Liebermann, L.N. 2146
44 Lippmann, B.A. 1 3 111
45 Lysanov, Yu.P. 1 1 1,231 11]1,2

7,813

46 Lysanov, Yu.P. 1 2 {31141 21191
47 Lysanov, Yu.P. 1 11314122112
48 Marsh, H.W. 1 11313 |1 111]1,3
49 Marsh, H.W. et al, 1 213131212 ]|1]1]3,7
50 Marsh, H.W, 1 2131312 111]3
51 Marsh, H.W. 2131312213137
52 Marsh, H.W, 1 3 11
52 Marsh, H.W, 1 {1113 |32 11114
54 Marsh, H.W. et al. 3,6 3124
8 7

55 Martin, J.J. 2 213137
56 Medwin, H. 2 11 (2|6 |3 ]2 |L,2]1 ]334
57 Meecham, W.C. 1 1 14 |1 (1121111123
58 Meecham, W.C. L2 12 |1 |7 |21 113123
59 Middleton, D. L2 1,212 |8 |L,2{2 (1,2 1 12,3
3 4,5

60 Middleton, D. L2 L2 |2 |8 [1,2]2 |1,2 1123
3 4,5

61 Mintzer, D. 2 11 {2 {6 112 111111
62 Murphy, S.R. et al. 1 1 B5 11 1|11]1.2
63 Parker, J.G. 1 2 1311 |1 i{31t12
64 Parker, J.G. 1 2 13 |1 |1 12 |t}|31]2
65 Parkins, B.E. 1 2 {6 (31212 (1(3]3
4,7

66 Patterson, R.B. 1 {8 {13 |1 1 {113
67 Pollak, M.J. 2 |1 2 ]2
68 Proud, J.M. et al, 1 1 {4 {1 (1 }2 (1 }3]2
69 Proud, J.M. et al,. 2 J1 |1 16 |3 |1 |21 )3 |36
70 Richter, R.M. 2 |2 2 |3
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Ref, Author(s) A C|D|E G|H|I|J
no.

71 Rojas, R.R. 3 114
7 Schulkin, M. et al. 1,2 3 13,7
73 Shaw, L. 1 1 115
74 Smirnov, G.E. et al. 2 2 1,3 1,211 |2 |3
75 Smith, B.G. 1 1 315
76 Uretsky, J.L. 1 1 1 12 1 |3 |2
77 Uretsky, J.L. 1 1 1 L,2 11 11 |1
78 Urick, R.J. 2 2 12 |3
79 Urick, R.J. et al. 2 2 12 13
80 Wagner, R.J. 1 1 315
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3. COMMENTS ON THE LITERATURE

3.1 Introduction

The phenomenon of scattering and reflection of sound waves at the
sea surface, generally speaking, takes place simultaneously in

three domains:

a. Time

The ocean surface is continuously in movement, due to winds and
currents, A realistic description of this surface and its
reflection properties is therefore impossible without involving
the time variable. Most promising seems the Neumann-Pierson model
of ocean waves, based on a surface whose elevation and slopes can
be considered as stationary Gaussian processes., This subject is

discussed in greater detail in Section 4.8.

b. Frequency

The scattering and reflection properties of the surface are not
only a function of time, but also of the signal frequency. For
very high frequencies a behaviour similar to "geometrical optics"
is likely: shadowing of "valleys" by "peaks" may occu - (see
Section 4.6), whereas for low frequencies the waves will be

diffracted and reach all surface points.

c. Sgace

The diffracted field depends strongly on the relative position of
source and receciver with respect to the boundary. The shadowing
mentioned in (b) will become increasingly important when the
grazing angle approaches 0. Volume-scattering due to an

inhomogeneous sub-surface layer can also take place then,

A general statistical description of the diffracted field, complete

up to second order statistical moments, therefore requires both

a realistic surface model that takes into account the possibility
of shadowing and sub-surface scattering, and observation of the
field at two separately located receivers, at two frequencies,

and at two instants of time. Only then one can obtain knowledge
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about the following subjects:

Impulse response of the surface
Frequency spreading of signals due to the Doppler effect
(Coherence limits)

Curvature of the wave fronts.

OQur first and general conclusion may therefore be that most of the
papers analysed give a very incomplete description of the scattering
and reflection of sound waves by the ocean surface, as they deal —

roughly speaking — only with the following features.

a. Time-Independent Surfaces

The sinusoidal boundary is often encountered (Refs. 13, 31, 36, 37,
64, 76), and the saw-tooth also occurs (Ref. 68). Both of them are

very rough approximations of the true sea boundary.

The random surfaces are based on the assumption of a stationary
Gaussian process, mainly for computational reasons. Analysis of the
sea surface has shown that this assumption is not far from the truth
(Refs. 4, 24). The spatial correlation function of the surface.
however, is often arbitrarily chosen, e.g. exponential or Gaussian,
again with the ercuse that it makes continuation of the calculations
possible. In more recent publications the Neumann-Pierson model of
ocean wave spectra is receiving increasing attention (Refs. 49, 51,
55, 65, 72).

An intermediate position is taken by the random periodic surfaces
(Refs. 21, 29, 30, 33).

b. Monochromatic Waves

Sometimes, in experimental work, a pulsed-CW source is used (Refs. 17,
28, 32, 34, 39, 56, 67, 68, 69), or even explusives (Refs. 9, 10, 18,
19, 20, 51, 70), but then the analysis is done via narrow-band

filters, reducing it to the monochromatic case again.,

¢. One Receiver

Exceptions are found in the Russian literature (Refs. 33, 34).
(See Section 4.2)
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d. No Shadowing

This subject is treated separately (Refs. 14, 16, 73, 75, 80).
(See Section 4.6)

e. Ideal Sub-Surface Layer

In experimental work the presence of such a layer is sometimes
hypothesized (Refs. 10, 19, 23, 78, 79). Russian authors have
investigated its influence in some theoretical work (Refs. 29, 46, 47).
(See Section 4.4)

There is one important exception to this general conclusion: the quasi-
phenomenological approach of Middleton (Refs. 59, 60). A very short

description of this approach can be found in Section 3.4.

3.2 The Rayleigh Method and Related Solutions of the Wave Equation

with Boundary Condition

At the end of the 19th century Lord Rayleigh studied the scattering

of sound waves at periodically corrugated surfaces (Ref. 6). His
method can be considered as the first attempt to solve the wave
equation in combination with a boundary condition. It is an intuitive
approach that has been used by many investigators, of. n with
modifications, up to the present day. The Rayleigh method is

described in Section 3.2.1.

The periodicity of the boundary prompted Rayleigh to expand the
reflected field into a set of undamped plane waves. His assumption
that this expansion is valid up to the boundary (which he made to use

the boundary condition) has been questioned by many authors.
"However, ...... N0 rigorous proof of the invalidity of Rayleigh's method has
ever been published" (Ref. 77, p. 402).

Although Rayleigh's method was originally suggested by periodicity of
the boundary, it has been extended by Marsh to random surfaces.

Details of this generalization can be found in Section 3.2.2.
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3.2.1. Rayleigh's Method for a Sinusoidal Surface

A simple and straightforward description of the Rayleigh method for
a periodic boundary is given by Beckmann (Ref. 2, Chapter 4), from

which the following is a summary.

A plane monochromatic sound wave with wavelength ) is incident on
an infinitely long periodic boundary with angle of incidence §. In

its most simple form such a boundary can be described by:
z=¢(x) =¢(x+14) (= < x < @), (Eq. 4)

where A 1is the period of the surface corrugation. Because of the
periodicity of the surface the diffracted field is assumed to
propagate in certain discrete modes, making angles 8m with the

vertical that are given by the grating formula:

sin B, = sin § + m A/ A (m = 0, t 1, s 2, oo,

or in terms of the wave numbers k and K
sin 8 = sin g + m K/k. (Eq. 35)

We remark that for m = 0 the reflection is "specular'.

According to Eq. 35, em can only assume discrete values when )
and A are held constant. These are the directions of scattering.
They have the property that in these directions the waves scattered
from individual periods reinforce each other because their phase

difference is an integral number of periods.

For a sinusoidal surface, namely for

¢ (x) = h cos (Kx) (-2 < x < ») (Eq. 6)

Rayleigh calculated the amplitudes Am (m = 0, E 1, t 2, ...) of

the scattered waves via the boundary condition p = 0, where p 1is

the total pressure field. His procedure for obtaining a solution of
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the wave equation, i.e. the coefficients Am, is based on two

assumptions:

a. That the total field can be written as an infinite sum

of plane waves:

p(x,z)==exp[ik(x sin § - z cos 9)]-F Ei Am exp[ik(x sin §_+z cos em)]

m=-—e

(Eq. 7)
(the first term on the right hand side being the incident wave).

b. That this equation holds everywhere above and on the
boundary. This assumptinn is not at all obvious and has been

seriously criticized. (See Section 3.2.3)

With his two assumptions Rayleigh found that for a point (x,z)

at the boundary

exp[-ikC(x) cos e]==- i} Am 5 exp[ime + ik(¢(x) cos em]' (Eq. 8)

m=-e

"Both sides of this equation are now exparded in a Fourier seriss with respect
to x (which will in general result in a double series on the right side) and
the resulting Fourier coefficients are equated. This results in an infinite set
of linear equations, sack of which contains the unknown coefficient Am. By
progressive solution (cr successive approximation) the coefficients Am are tnen

approximated" (Ref. 2, p. 43). Formulae for the firsi coefficients

can be found in Table 2.

The total number of possible modes as predicted by Eq. § is limited
by the condition |sin aml <€ 1. We call this maximum M. For

m >M the condition is violated., Then cos am becomes imaginary
and we have (See Eq. 8) waves propagating along the surface

(Rayleigh surface waves) that decay exponentially with depth,
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The propagation in discrete modes described here is valid for
"surfaces?" ﬁhat extend from -e to +», It is.interesting to note
what happens when the periodic surface is of {inite length. Then
the diffracted field — instead of being cancelled completely
because of destructive interference between the directions given by
the grating formula (Eq. 5)— decreases gradually and then increases

again, when the observer is moved from the direction B to em-Fl'

In this way the so-called "lobes" are formed. Their width increases

as the surface becomes shorter.

For several combinations of 8§, A and kh, Beckmann (Ref. 2)

gives figures that illustrate this formation of lobes (Fig. 1 and 2).
They show that with decreasing value of kh the "roughness" becomes
smaller so that fewer and fewer sidelobes appear and the lobe with

m = 0 (specular reflection) becomes more and more pronounced. With
constant kh anu fj the reflection becomes more specular as §
increases. Both facts agree with a definition of roughness of the

form
x = Ckh cos §. (Eq. 9)

Other authors (Refs. 8, 12) considered an infinitely long
periodical boundary, i.e. they studied the set of amplitudes ;

A A+1, Atz,"Atm. Abubakar (Ref. 8) arrived at some interesting

O’

conclusions:

a. If kh << 1, the non-specularly reflected waves are

small, irrespective of )\, 3pecular reflection is then dominant.

b. If A\ << )\, surface waves can occur. Part of the incident
energy is then trapped in the "valleys", at the expense of the
undamped scattered waves. These can become completely negligible, so
that, if )\ is small enough, only specular reflection (m = 0)

remains. This agrees with Beckmann (Ref. 2, p. 36).
3.2.2 The Marsh-Rayleigh Method for a Random Surface

The methond of Lord Rayleigh for a sinusoidal boundary has been

generalized by Marsh for the case of a random surface (Ref. 43).
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A=10\ 0 =45, kh=6

FIG. 1 DIFFRACTION OF A PLANE HARMONIC WAVE BY A SINUSOIDAL BOUNDARY OF FINITE LENGTH

Wavenumber k 22 7T/ A;
for the surface roughness.

? (x) =h cos{2 W x/A); ongle of incidence 8 = 45°, kh is a measure
From Beckmorn ond Spizzichino ~ Ref. 2, pp. 50-56)
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FIG. 2 DIFFRACTION OF A PLANE HARMONIC WAVE BY A SINUSOIDAL BOUNDARY OF FINITE LENGTH

Wavenumber k = 2T1/A; ? (x) = h cos(2W x/A) ; ongle of incidence 0 = 80°, kh is a measure
for the surface roughness. (From . Beckmonn and Spizzichino — Ref. 2, pp. 50-56)
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He published his generalization "in an heuristic form, in order to avoid

presenting the excesdingly heavy analysis required for a rigorous treatment"
(p. 330). This omission of sufficient comments on the basic steps
in his paper, together with a rather large number of misprints,

makes his article somewhat hard to follow.

Marsh's extension of the Rayleigh method is obtained via Wiener's
concept of "Generalized Harmonic Analysis" (Refs. 5, 7). It produces
an expression for the correlation function of the scattered field at
two points in space in a horizontal plane below the rough surface

upon which a plane monochromatic sound wave is incident, but "this
solution is readily extended to include electromagnetic waves, general elastic

waves, and non-planar, non-harmonic sources" (p. 330 - abstract).

The "exact" solution for the problem of wave scattering by irregular

surfaces can be summarized as follows.

A monochromatic plane wave (direction cosines g, 8, Y) is incident
on a random pressure relief boundary S[z = s(x,y)]. For the

diffracted field pl(x,y,z) a plane wave representation is sought by

writing
+oo

P {%,y,7) =J:re><p[—ik(xx + uy - vZ)] dG(x,u) > (Eq. 10)
-

where G(),u) is the generalized spectrum of pl(x,y,z) and

A, 4. v are the direction cosines of the diffracted wave (hence:
\¢ + u? + v® = 1). The expansion (Eq. 10) is a straightforward
generalization of the Rayleigh method for a periodic surface, in
which pl(x,y,z) was decomposed into an infinite series of plane

waves (See Eq. 7).

Rayleigh's second assumption, that the expansion is valid up to the
boundary, is also adopted by Marsh; the criticisms of Rayleigh's

approach apply therefore equally to Marsh (See Section 3.2.3).
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With the boundary condition of zero total pressure and after

normalization of variables: kx = &, Kky = n, ks(x,y) = of(E,n),

02 = k®h?, h® = ((s - (s))?Y and (({ - (C))®) = 1, Marsh obtained

+eoo
exp[-i(c@ + gn + yoC)]tJ;IeXp[-i(lﬁ + un - voC)] dG(yr, w) = 0. (Eq. 11)

After this he expanded G(), y) in a power series in 0:

G\, W) =Z " A (s n) (Eq. 12)
m=0

and the coefficients Am ¢are to be calculated. Substitution of

Eq. 12 into Eq. 11 yields an infinite set of simultaneous linear
equations for the determination of the Am (A, ). By clever
manipulation of these equations Marsh found a simple-looking
expression for the scattered field at a point not on the boundary.
Choosing the coordinate system in such a way that the point of
observation lies in the plame 2z = 0 (this includes: ({(x,y)) # O,

in contrast to most other theories) he obtained:

exp| -i(ag + By + yo() |
1 + X

p(g, ns 0) = - (Eq. 13)

where X 1is a complicated operator closely related to the basic

expression in Wiener's work,

Marsh, Schulkin and Kneale (Ref. 49) have worked out the method in
more detail, assuming ¢ so small that G(), u) can be represented
satisfactorily with three terms of the series in Eq. 12. The
necessary condition for this approximation was not discussed. They
found that
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dA,

-8(r-a) 8(u-p) drdu

dA, = Zin<ge-i(ag+Bn)> dady
(Eq. 14)

dA, = 2Yp(g) * [vF<ge‘i(“g4'5“)>] dadu

where F(-> denotes the Fourier transform and % means convolution.

Equations 10, 12 and 14 with 2z = 0 gave an expression that approximates

Eq. 13.

The correlation function

‘1’(§, n) T (p(gi’ Ny o 0) p%(gq_ t+ g, N4 +n, 0)> (Eqn 15)

then followed easily:

+e
¥(g, m) = e HOEFEN) [yhyyrces(e, m) -4y0? H\m(x- @ u-8) dadu] .

(Eq. 16)

In this formula F(), u) is the "power spectrum" of ((&, n), and
¢(§, n) the surface auto-correlation function; F and § are each
other's Fourier transforms.

The Fourier transform of VY(g, n), called AM(x, u), has an

important physical meaning: it "is proportional to the intensity of waves
procesding parallel to the line with direction cosines }),v. ... In general,
AM will consist of both a discrete and a continuous portion, The discrete
portion, whers AM is singular, represents plane scattered waves of finite
amplitude (such as the specularly reflected wave). For such plane waves, the

integral of AM in the immediate vicinity of its singularity is equal to the
square wave amplitude" (Ref. 48, p. 331).

32

s oo




P e - = o B0y

i

Fourier transformation of Eq. 16 indeed gives two terms of different

character:
Mg(Xs w) = 0(a, B) 8(x-a) &(u-8) + T(x, v (Eq. 17)

where (Q is the specular part:

+w
(e, B) =1 - 4yo® HF(&- o, m-8) (1-242 -mz)% dtdm, (Eq. 18)

and T the non-specular part:

T(x, u) = 4y%0® F(r-a, u-8). (Eq. 19)

This last expression is comparable with Eckart's formula for ¢
(see Eq. 47). It shows a similar dependence on the wave spectrum F,

but differs in the proportionality factor,

The specular term ( is used in Ref. 49 for the prediction of the
surface loss per bounce, when a ray travels in an isothermal
surface-bounded channel, whereas the non-specular scattering part T,
also called "spectral reflection" (Ref. 49, p. 338), is considered
in the backscattering studies (Refs. 50, 51). A more detailed
treatment of these and related subjects can be found in Refs. 11 and
54. Comparison of the Marsh theory with experimental data shows

satisfactory agreement (Ref. 51).
3.2.3 The Dispute about the Rayleigh Method

Commenting upon Rayleigh's procedure for obtaining a solution for the
wave equation in the presence of a sinusoidal boundary, Uretsky

remarked that: " The crucial and unjustified step in this procedure is tha
assumption that Eg,. 7 describes the solution sverywhers above the bounding

surface" (Ref. 77, p. 401). Referring to a letter by Lippmann

(Ref. 44) he made it seem plausible that the assumption breaks down
in the "valleys" between the "peaks", because there both upgoing and
down-going waves should be expected. For this reasun he carefully
developed a solution to the problem, based on Green's cheorem,

(See Section 3.2.4). Comparing his results with those of Rayleigh,
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one of his conclusions (based on numerical experimentation)

is " that the Rayleigh equations are useful when the undulations of the bounding
surface are gentle (small hK)" (Ref. 77. p. 421).

Meecham too (Refs. 57, 58) remarked that the validity of Rayleigh's
second assumption is doubtful. He developed a variational method,
for the case of a periodic surface (Ref. 57), which improves the
Rayleigh method via an error-minimizing procedure and a Fourier
transform method for boundaries of arbitrary shape (Ref. 58). This
latter method, in which an approximation of the first derivative

of the pressure at the boundary is obtained via a receiver at this

boundary, is found to be " preferable to previous methods, notably those
which can be classified as physical optics (such as Rayleigh's), since the error
in the transform method is of second order in the surface slope whereas the
error in previous methods is of first order in the same quantity " (Ref. 58,

p. 370 - abstract). Applied to a sinusoidal boundary the method

produces expressions for the amplitudes Am.

The question of the validity of Rayleigh's second assumption has

been attacked from another side by Heaps. He presented "an
investigation of the least possible value of the surface pressure consistent
with the assumption that all the reflected radiation is in the form of undamped

plane waves " (Ref. 37, p. 815). He arrived at the conclusion, after
comparison of his results with experimental data collected by

La Casce and Tamarkin from a sinusoidal model surface (Ref. 41),

" that if all the reflscted energy has the form of undamped plane waves then the
surface is necessarily sound absorbing and of pressure significantly different

from zero. Thus, in the neighbourhood of a corrugated surface of zero oressure

it is necessary to take into account other forms of rediation and such forms

play a significant part in satisfying the boundary condition" (Ref., 37, p. 818).
As Marsh has generalized the Rayleigh method for random surfaces, he
is arguing "In Defense of Rayleigh's Scattering from Corrugated
Surfaces" (Ref. 52). His results {for simplicity he takes a sinusoidal
surface) have been compared with those of Uretsky (Refs. 76, 77)

by Murphy and Lord. They showed "that Rayleigh's formulation is inadequate

for the description of the scattered field" (Ref. 62, p. 1598 - abstract).
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The experimental results of La Casce and Tamarkin (Ref. 41) are also
used by Uretsky to check his theory. Presenting curves for the
reflection coefficients of order m = 0 and -1 together with

data points. he felt " that the general trend of agreement is encouraging"

(Ref. 76, p. 1294).

Also Barnard et al. concluded that the " theory forwarded by Uretsky
provides a satisfactory prediction of scattered sound field from a pressure-
release sinusoidal surface when the amplitude of the sinusoid is comparable to

the wavelength of the incident radiationt (Ref. 13, p. 1169).

Finally we remark that Beckmann (Ref. 2), surprisingly enough, does

not touch upon the question of the validity of Rayleigh's assumptions.

The results of the abovementioned papers lead us to the conclusion
that the Rayleigh method is indeed incorrect in the way the
boundary conditions are used, as it causes contradictions.
Nevertheless, for smooth surfaces the method produces results that
do not disagree more with experimental data then do other, more
rigorous, solutions, It is therefcre useful to a limited extent.
The method developed by Uretsky. on the other hand, is strict in a
mathematical sense and therefore superior to the Rayleigh solution.
It is expected to have a much wider validity, as the Rayleigh
results can be considered as the first step of a series tuat

converges towards the Uretsky results.
3.2.4 Uretsky's Method for a Sinusoidal Surface

Uretsky devoted two publications to his method: a very short

outline (Ref. 76), which is no more than an introduction, and a very
thorough and detailed treatment (Ref. 77). The latter contains a
complete description of the method with the necessary mathematical
proofs, as well as valuable comments upon the Rayleigh method and the
Kirchhoff approximation. Application can be found in a study by
Barnard et al. (Ref. 13), who snummarized the Uretsky approach, made
numerical predictions., and compared these with experimental results
from a pressure release cork surface in a model tank. Satisfactory

agreement was obtained.
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The method starts in the same way as the Rayleigh method. A plane
monochromatic wave with direction cosines ),(= sin §) and

u°(= cos f) is incident on a sinusoidal pressure release surface
z = ¢(x) = h cos (Kx). (Eq. 20)

Instead of assuming that the scattered field can be expanded into
an infinite set of plane waves (as Rayleigh did), Uretsky proves
that this is possible for observation points not too close to the

boundary, i.e.:

[ -]
p,(x, 2z) = 2} A exp[ik(x sin g +.z cos em)] (z = h).

m=-

(Eq. 21)

The difference from Rayleigh appears in the next step: the
expansion (Eq. 21) is not valid for z < h, because there the
terms of Eq. 21 fail to be solutions of the wave equation.

The Helmholtz formula (Ref. 1), which expresses the scattered field
P, as an integral over elementary sources induced on the boundary
by the incident wave p,, is invoked to avoid Rayleigh's second
assumption., In terms of Green's functions* the Helmholtz integral

can be written as
p,(P) = (4n)'1j[Gk(?|?') vp(R') -p(?) vck(?|i~")] ds(®'), (Eq. 22)

where p is the total pressure at the boundary. This quantity

is zero on a free surface: hence the second term between square

3 -, -
A Green's function Gk(r)r') expresses the field at r due to a
unit point source at ¢ (monochromatic, wave number k).
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brackets in Eq. 22 vanishes. As for a two-dimensional case we have

22) = in0nl (k|2-21]) (Eq. 23)

the expression for the scattered field becomes:

py () =§f axt B (k|r-71]) v p(r1). (Eq. 24)

"The crucial step in the present formulation of the problem is to recognize

that Vp(;') admits a Fourier series representation" (Ref. 76, p. 1293);

the proof is given in Ref. 77. Hence:

wp(r)

]
=
T~

(1)~3 B, exp[ik(xo + 3 K/k)x']

-]
k z‘ (i)Y Bj exp(ikxjx‘).

j=-e

(Eq. 25)

Putting this in Eq. 24 gives

pl(x, z) = 2} E. (i)—j Bj ‘r dx! HOO) (k]:-—:") exp (ikxjx').

j=-e
(Eq. 26)
In order to find the scattered field p,, the boundary coefficients

Bj have to be determined. This can be done via the boundary

condition of zero total pressure, which gives

'px(x’ ;(x)) = po(x. g(x)) E exp[ik(xox - Moh cos (Kx))],

(Eq. 27)

37




As in the Rayleigh method, the expansion

(-]

| exp(ib cos Kx) = E. it Jn(b) exp(inKx) (Eq. 28)

n=-

is used. Writing the Hankel function as an integral

-
-2 dK

-
= exp(iK . Ry) (Eq. 29)

Uretsky obtained from Eqs. 26 and 27

z; i~ Jm(hkuo) eXp(ikxmx) =

m=-e

L TTY @,
jnl

& J__.(hkt) J,(hkt)
‘fdt o ¢ exp(ikx ., x) (Eq. 30)

=N

2

- (ta _ us&)

where uﬂl =1 - AZL and Ay is defined in Zg. 25.

Defining a matrix element MLj:

J: " In-j (hkt) J,  (hkt)

n
M = -(2m 7y (-1)" (Eq. 31)
n -o (t® - u’n)
and equating in Eq. 30 the coefficients of eikxmx, gives an
infinite set of algebraic equations for Bj:
[ ]
) M, By = (-0)% 3, (k). (Eq. 32)
j=-»
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" The major complication of the problem (other than the usual difficulties
associated with inverting infinite matrices) is in the calculation of the

matrix elements M, " (Ref. 76, p. 1294). But the evaluation is

possible, although the result is somewhat complicated:

_Ni_pn [pn . _ 8
My = ) (D [R v (ki) = 2(20)7 3, (k) Jn_j(hkun)]
n
(¢+j even), (Eq. 33)
MLj = 0 (4+3 odd).
The function Rn . may be written in terms of the generalized

13
hypergeometric function ,F,:

. 1-3 3-1
3F4(1 ’ 1,225b9'ba—r;—r; "baua)

[(2n-2-3)2 -1] [(2-3)2 -1]

5 (Eq. 34)

Rﬁd (bsu) = b(%)a

Inversion of Eq. 32 yields the boundary coefficients Bj‘ A relation

between Am and Bj is then needed for the calculation of the

scattered wave p, with Eq. 21. The required relation is proved to
be

. _ ¢ oamtl -1
A = (O™ (2u™h ) By 3, 5 (k). (Eq. 35)
J

Obviously the Uretsky method is far from simple. But the results
are obtained with a high degree of mathematical strictness and with
a minimum of conditions on the validity. In fact the only condition

is that shadowing does not occur, i.e.

tan § < hK. (Eq. 36)
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It may be noted that only the surface height h appears explicitly
in the formulae; the surface period K is still present, however,

as it should be via Moy and xm'

A generalization of the Uretsky method for random surfaces seems
possible, Marsh having indicated the way to do it. The result could
be interesting (although probably rather complicated), as it would

be applicable to the ocean surface without too restrictive conditions

for the roughness.

3.2.5 Comparison of Several Methods with Each Other and with

Experimental Results

It has been noted already that La Casce and Tamarkin have provided
the theoreticians with experimental data that could serve as a check
for their theories. These data have been published,more than ten
years ago,in a study on the reflection of underwater sound from a

corrugated surface (Ref. 41). They will be discussed later.

In addition to their experimental work, the authors have summarized
the theories of Rayleigh, Eckart (Ref. 26) and Brekhovskikh and
compared them with their data. Their formulae for the amplitude

coefficients are reproduced in Table 2,

Several authors have used the experimental results of Ref., 41 to
check their own theories: Meecham (Ref. 58) applied his Fourier-
transform method to a sinusoidal boundary, Parker (Refs. 63. 64)
extended the Rayleigh series of plane waves into an integral,
Heaps derived from the Rayleigh method a recurrence relation for
Am (Ref. 36) and (with the assumption that the reflected field
contains only undamped plane waves) obtained values for Am that
minimize the mean square pressure at the boundary (Ref. 37), and,
lastly, Uretsky (Ref. 76) avoided the mathematical defect inherent

in Rayleigh's procedure with a careful and rigorous solution.

All the methods developed for the scattering from sinusoidal

boundaries, though very different in their final results, &gree
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TABLE 2

AMPLITUDE COEFFICIENTS FOR A SINUSOIDAL BOUNDARY (Absclute Values)

(From: La Casce and Tamarkin - Ref. 41)

Rayleigh
A, = J,(2 hke) + 3(C - C_,) hkJ, (2hkc)
A_, = J,(2 hke)
Eckart
Ay = J4(2 hke)
C+cm - =
A, = —— JmLc + cm) th
2c
Brekhovshikh

Ay = J,(2 hke)

+ 2 4 - 2 - _
. = (c + cp) (s ém) JmL(C ‘o) th

m
2 cm(c + cm)

c = = si = co s_ = sin
(c = cos g, s = sin g, c_ S 8,0 S, 0,)
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in predicting that the main directions of scattering are given

by the grating formula:

sin 8, = sin g + mK/k , (Eq. 37)

where K 1is the surface wave number and the other quantities

are as defined in Fig. 3

F1G. 3 DEFINITION OF ANGLES AND {#40NFS FOR THE SCATTERING OF PLANE WAVES FROM A
SINUSOINAL BOUNDAPY, THE SPECULAR DIRECTION OCCURS FOR m = 0.

TABLE 3

SURFACE PARAMETERS (La Casce et al., - Ref, 41)

K h
Surface (cm'l) (em) Kh
1 6.64 0.32 2.12
3.12 0.24 0.75
3.08 0.15 0.46
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La Casce and Tamarkin obtained their results with pressure release
cork surfaces of approximately sinusoidal form, floating on top
of the water in a tank. Such a surface can be described with the

formula
¢{(x) = h cos (Kx). (Eq. 38)

For a concrete situation values have to be assigned to the
following parameters: §, k, h, K and m, the scattering mode number
(0, £+1, ...). La Casce and Tamarkin have experimented with three
surfaces, for which h and K are given in Table 3. They
measured the scattered amplitude A (m = 0, -1 and -2) for

8 = 0°, 20°, 40° and 60° as a function of kh, thus providing a rich

source of data for comparison.

In order to facilitate the comparison of the available theories
with each other and with experimental results, we have plotted in
Figs, 4-9 some of the data of La Casce and Tamarkin together with
theoretical curves. The ones according to Rayleigh, Eckart and
Brekhovskikh we have computed with the formulae of Table 2; the

other curves are copied from the original papers.

The figures show the specularly reflected amplitude a~d the first
and second order backscattered amplitudes for § = 0° and 40°, as
functions of kh, for the third experimental surface (hK = 0.46),

as this is the most sinusoidal one and because most of the theories

presented are based on the assumption of small surface slopes.

Since the surface under study is not very rough, the Rayleigh
prediction is not significantly worse than other curves. The
Uretsky curves, for which a small slope is not required, are
satisfactory but do not appear superior to the others: More
interesting, therefore, is the application of Uretsky's theory to

rough surfaces.
This has been done by Barnard et al. (Ref. 13) in their model

studies. Their surface can be described with: h = 1.5 cnm,

K = 1.4 cm~® and hence hK = 2.1. The frequency of incident sound
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was 100 kHz (or k = 4.2 cm  , making hk = 6.3). They measured the
backscattering as a function of grazing angle with fixed angle of

incidence. A typical result is shown in Fig., 10." The agreement between

the calculated and experimental curves ... is, in general, excellent" (Ref. 13,
p. 1168).

3.3 The Kirchhoff Approximation and Variations

When the scattered field at an observation point is expressed as an
integral over elementary sources induced at the surface by the
incident wave (this is the so-called Helmholtz integral - Ref., 1),
an assumption has to b: made for the first derivative of the
scattered wave field at the free boundary. For a random surface
the exact value of this quantity is hard to obtain; approximation

then takes the place of exactness.

The assumption most frequently met is the "Kirchhoff approximation":
the required directional derivative is put equal to the first

derivative of the incident wave, which is a known quantity.

The leading publication in the group of papers that adopted the
Kirchhoff approximation is the paper by Eckart (Ref. 26). The
interest of Eckart's work lies in the fact that he "obtained

significant results with minimum mathematical complexity by relying on a highly

developed physical insight into the problem", as has been remarked by
Horton and Muir (Ref. 38, p. 627).

3.3.1 Eckart's Theory

The basic ideas of Eckart's theory can be summarized as follows.

A transmitter T (monochromatic) and a receiver are placed above a
reflecting surface S[z = ¢(x, y)]. The transmitter induces
elementary sources at S; the scattered pressure field p‘(R)

can be obtaired from these sources via the Helmholtz integral:

ap ikr ilkpr
1 1 e d,e
p, (R) RU as[ E— - p2(=)] (Eq. 39)
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in which r is the distance from dS to R, and H is the unit

normal to dS directed away from R. For a pressure release surface

one has the boundary condition

P t P,=0 on S, (Eq. 40)

where p, is the incident pressure wave., The evaluation of the
Helmholtz integral requires also the first directional derivative
of Py - As a second boundary condition Eckart assumed the validity

of the Kirchhoff approximation, i.e.:

op )
s S on S. (Eq. 41)
on an

Mintzer (Ref. 61) has critizised this asgumption with good reasons:
when p, is fixed on S the quantity _EL cannot be chosen

1
independently (Ref. 1). He showed that the second assumption is

at most a first approximation for smooth surfaces.

Eckart assumed that T is a directional source and so far away
from S that for all points of the insonified area the distance to
T is the same, A similar assumption is made for R. Indicating

the positions of T and R with the direction cosines (aT, B yT)

and (aR, Br> YR)’ putting ap + a; = a, etc., and replacing
3

— by 2 (small surface slopes) he derived from Eq. 39:
on d2

ikr10+“
e
dnp‘(R) = iky ———-——L[rdx dy P exp[—ik(ax + py + yc)l (Eq. 42)

r
-®

where o is the distance from R to 0, the centre¢ of the

insonified area, and P equals the incident pressure at 0.
Equation 42 is the basic expression in Eckart's theory. It is

used as the starting point for special cases.
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Although the Eckart theory can be used for non-random surface profiles

(see Section 3.2.5), it is designed originally for a random surface

((x, y) that can be considered as a stationary two-dimensional

process, in which case second order moments of the scattered field are

calculated.

Two auxiliary functions play a role in the theory:

Q(gs ﬂ_) = (Q(x, y) Q(X t+ g, y+ 'ﬂ)) (EQ- 43)
ard
+e
g, n) = de dy P(x, y) P'(x+¢8 y+n). (Eq. 44)

The function & 1is the autocovariance function of the surface
relief and J can be considered as the autocovariance function of

the surface insonification.
Putting §(0, 0) = h®, <calling a the effective correlation
distance of ((x, y) and L the effective size of the insonified
area, the basic conditions of Eckart's theory are

h << ) << a << L. (Eq. 45)
Eckart calculated the average scattered intensity (IS). for the

low frequency and the high frequency cases. For the low frequency

case he found
(£,) = J(0, 0) o (Eq. 46)
with

o = (k¥y?/4m)? F(ke, kp), (Eq. 47)

the function F(Kx, Ky) being the surface wave spectrum. He refers
to g as " a dimensionless quantity that may be called the scattering
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coefficient, or more descriptively, the scattering cross section for unit solid

angle per unit area of sea surface" (Ref, 26, p. 568). Equation 47

indicates an important result: " the low-frequency scattering is

determined by the surface spectrum, and not by the height distribution "
(Ref. 50, p. 197).

In the high frequency case the calculation of ¢ is possible only

if the characteristic function of the two-dimensional random variable
W= [¢(x, y), c(x'. y')] is known. The hypothesis of a Gaussian
probability density yields an expression for ¢ that is independent
of frequency. This is a disappcinting result for the "inverse
problem" (see Section 4.7) as it does not contain the function &

but only the variances of the surface slopes.
3.3.2 Variations of Eckart's Theory

Horton and Muir (Ref. 38) extended the low frequency case by
specifying &(E, nm) (or F(K,, Ky), its Fourier transform> for
isotropic cases. Among others they substituted an exponential and
a Gaussian shape for §. They found in all considered cases that,

if a>>h, "the scattered energy is highly directional and is concentrated

about the direction of specular reflection® (Ref. 38, p. 632).

A companion paper by Horton, Mitchell and Barnard (Ref. 39) deals
with experiments on a rough Gaussian surface in a model tank. The
authors used the high frequency formula for ¢ of Ret. 38 to
check their experimental data. The agreement was not very satis-

factory, until they changed the second boundary condition into:

3p,

a0 = 0 on S (Eq. 48)

being a conpromise between Eq. 41 (valid for illuminated areas) and

9 d
_Bl =.._£3 (holding in the deep shadows). The remarkable effect

dn dn
of this new boundary condition can be observed in Fig. 11,
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Although Eckart discusses only a low frequency and a high frequency
case, his theory is also valid in the intermediate range of

frequencies. Proud. Beyer and Tamurkin presented " a solution valid

for all wavelengths " (Ref. 69, p. 544) for a surface with Gaussian
probability density (at least up to the second order), in which

the Fourier integral plays an important part.

There is a difference between their procedure and the one followed
by Eckart, which may be important for practical purposes at low

frequencies. " In the original Eckart theory, the scattering was described
in terms of a scattered intensity proportional to the square of the magr.itude

of the difference in pressure reflected from the rough surface and that reflected
from a plane surface replacing the rough one, This procedurs dictafes that one
knows both the amplitude and phase of these pressures in an experimental

determination of the scattered intensity ", The procedure adopted by
Proud et al., " leads to the experimentally simpler operation of forming the

difference between plane and rough surface reflected intensity. No consideration

of phase is then necessary " (Ref. 69, p. 546).

The authors investigated the dependence of the specular reflected
intensity on the acoustic wave number, angle of incidence, and
surface roughness. The experimental part of their investigations
took place in a model tank with surfaces that had approximately
Gaussian characteristics. The quantity khy ranged from 0.25 to
2.C0 in the first case, i.e. from a smooth to a rough surface.

The agreement between theory and experiment was good, notwithstanding

the violation of the condition of small surface slope,

A comparison between theory and experiments at sea has been made by
Clay (Ref. 22). Using the data of Brown and Ricard (Ref. 17),

— who placed a pulsed-CW source (168 Hz, 89 ms long) and a receiver
at a depth of 1000 yards, varied their horizontal distance between
1000 and 5500 yards, and measured the fluctuations of the scattered

field — he found from numerical calculation " a curve that had about

the same dependence upon the source-receiver separation as the axperimental data "
(Ref. 22. ». 1551). Clay extended the Eckart theory to an

omnidirectional source by subdivision of the surface in rectangles

for which the original theory could be applied.
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3.4 The Quasi-Phenomenological Approach of Middleton

In contrast to the most widely employed "physical" methods, where
the irregularity of the boundary is introduced via the boundary
condition and where the solution of the wave equation has to
satisfy this complex boundary condition, the quasi-phenomenological
approach of Middleton (Refs. 59, 60) introduces the irregularities
of the surface independent of the wave equation as a random
distribution of point scatterers, each with its own impulse
response function and directivity pattern. This makes the model
very flexible from a theoretical point of view: time-variation,
frequency dependency of the scattering, broadband‘signals, complex
geometry, and directivity of transmitter and receiver, subsurface
scatterers (and also bottom and volume scatterers) are easily
incorporated into the model, and there is no limitation on the
degree of surface roughness. For this reason Middleton's is the

most complete theoretical method. ' The critical advantage of this
approach ara the elimination of impossibly complex boundary conditions, the
inclusion of the essential geometry of the overall system, and the ability to
handle general signals and aperture distributions. The priﬁcipal, but not
serious, limitation appears to lie in the ultimately empirical nature of the
impulse response function of the scatterers, which must be quantified at some
stage by sxperiment {Ref. 59, p. 374). The problem of 1w these
experiments should be performed is not discussed. unfortunately.
For this reason the practical significance of this elegant theory
seems limited. The most promising application for our purposes
may be found in computer simulations of the scattering phenomenon,
via a Monte Carlo method. On the other hand, the physical models,

although very limited in their validity. seem to have a closer

relation to erperimental work.

3.5 Experimental Results

3.5.1 The Amplitude of the Scattered Waves

When a monochromatic sound wave (that is. of constant amplitude) is
scattered from a wind driven surface, the amplitude of a diffracted
wave shows fluctuations in time due to the time-variation ot the

reflecting boundary.
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This effect has been measured by Liebermann (Ref. 42) and
Pollak (Ref. 67) at sea, and by D'Antonio and Hill (Ref. 25) with

a model tank,.

Liebermann (Ref. 42) swept the frequency of his source from 27 to
33 kHz in 20 milliseconds and observed the interference pattern
between reflected and direct wave, He defined a reflection

coefficient V as

A .
y = _max min (Eq. 49)

max min

where A and A . are the first maximum and the first
max min

minimum of the signal envelope, and found that:
a) Surface reflectivity is highly frequency dependent.

b) The median value of V is near to unity, but
for approximately 10% of the time V > 1 because
of focusing by the surface (p. 498 - abstract).

c) No correlation exists between si1face wave height

and reflection coefficient (p. 503).

Pollak (Ref. 67) used a pulsed-CW source of 100 kHz and analyzed
the reflected amplitude statistically. His results indicate that
the srobability density function of the reflected amplitude
follows approximately a Rayleigh curve (Fig. 12). The same result
has been obtained by D'Antonio and Hill (Ref. 25) with a wind
driven surface in a model tank. They conclude that n(a) for CW
transmission, the ervelope of the receivsd signal has a bandwidth greater

than the bandwidth of the surface amplitude; (b) crosscorrelations observed
between envelopes of amplitude-modulated transmission signals ard envelopes

of the received signals are low but finite; ard (c) tnere is ro correlation
batween the surface amplitude and the envelojpe of the received signsl

(p. 701 - abstract).
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3.5.2 The Intensity of the Backscattered Waves (Reverberation)

n The importance of surface reverberation in the applications of underwater
acoustics can hardly be over-emphasized., As a result, measurements of the
.backscattering of sound from the region of the surface have occupied the
attention of numerous observers. These efforts have tean of considerable value
in attempting to formulate a description of the phenomenon which is adequate
for the designer of underwater scnic devices and to reach an understanding

of the fundamental mechanisms of scattering at the air-water boundary defining
the surface" (Ref. 28, p. 104).

A completely flat surface would only produce reflection in the
specular direction. In the case of a rough boundary this specular
direction (even if it has only theoretical meaning) separates the
backscattering from the forward scattering. This separation has
been treated more in detail for the periodic boundary (see

Section 3.2.1 and Fig. 3).

In experiments at sea the scattered pressure or intensity is often
recorded. For comparative purposes a logarithmic quantity seems
more convenient. Hence in most papers a definition of surface
backscattering strength (in dB) appeared. And although these
definitions differ from one author to another (sometimes attenuation
and spreading loss are included (Ref. 28), sometimes a simpler
approach is followed (Refs. 78, 79)), their true differences are
small enough to make comparison possible, as is borne out by papers
of a comparative character (Refs. 28, 55. 70, 72).

As an example of such a definition we mention the one presented by
Urick (Ref. 78) for plane waves, because of its simplicity. He
defined the bac:.cattering strength, which we shall call Og> as

og = 10 log (18/:°) (Eq. 50)

where Is/ I, " is the ratio of the scatiared intensity from the unit ares,
measured at unit distance, to the intensity of the incident sound beam,

Following naval practice, these distances are expressed in yards" (Re.. 78,
p. 136).
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: Two types of sound sources are met: the directionail transducer

i ' ~ mostly operated with pulsed (W (Refs. 17, 28, 32, 34, 39, 56, 67,
68, 69) — and explosives (Refs. 9, 10, 18, 19, 20, 51, 70). 1In
the latter case the "specular direction" has to be inferred from
the geometry; the data processing is then carried out via narrow
bandpass filters, making them an aggregate of simultanecus

"monochromatic" sources.

All experiments considered here conc=ntrate on the mezsurement of

og as a function of one or more of the parameters @, v and f.

Typical results are shown in Figs. 13 and 14.

The curves for og as a function of ¢ prompted Urick to
" divide the angular range from grazing to normal incidence into three regions,
in each of which the dominant scattering process seems to be differant"
(Ref. 78, p. 140). These regions are indicated in Fig. 13.

In Region I the scattering by subsurface bubbles is predominant,
at least when f is of the order of 60 kHz: "bubbles can be

important at low grazing angles and high wind speeds, in the 60 kHz region, but
definitely not at frequencies of a few kilocycles or beslow" (Ref. 51, p. 243).

This scattering is not very dependent on ¢ for rough surfaces,
indicated by a more or less horizontal curve. Increase of wind

speed generates more air bubbles and hence increases Clay and

Op
B
Medwin agree with this explanation (Ref. 23, p. 2134), but
Chapman and Harris doubt its validity, as they do not observe it

at 30 knots. They believe "that the scatterers were in a layer of

biological origin"(Ref. 19, p. 1596) because a diurnal variation was

observed.

" Turning next to Region I1I, near normal incidence, the slope of the curves
in this region and their behaviour with surface roughnass suggests that sound
is returned by reflection (rather than scattering), probably by small, flat

wave-facets oriented normal to the incident sound beam" (Ref. 78, p. 142).

An increase of v now decreases g becausc at the rougher

surface less wave-facets have a slope favourable for reflection.
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(From Urick - Ref. 78)
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In Region II Urick is tempted " to speculate that the slow rise of

Og

with angle in this region represents the effect of roughness scattering by

surface irregularities that are much smaller than a wavelength " (Ref. 78,

p. 145).

Figure 15 illustrates Urick's theory of regions. "Except for the

small angle region, Garrison et al.

confirmed this hypothesis

(Ref. 28, p. 111). Richter (Ref. 70) reported a cg decreasing

with @, and Patterson (Ref. 66) derived a theoretical

(phenomenological) model that produces curves similar to those

of Fig. 13 in Regions II and III.

His curves do not show a constant

behaviour in Region I, but this can be explained by the fact that

Patterson only dealt with " 'facets' having random distributions of size

and slope" (Ref. 66, p. 1150) and neglected bubbles.

In Fig. 14,
tionality of

Op
Og

is shown as a function of frequency. A propor-

with f is indicated, This if in keeping with

the results of Chapman et al. (Refs. 19, 20) and Richter (Ref. 70)
as is remarked by Brown et al. (Ref. 18, p. 3). On the other hand,

in Marsh's theory of backscattering there appears to be an inverse

dependence of Op

on frequency (Ref.

50, Figs. 11-1 and 11-2),

Also worth mentioning is that the results of Chapman and Harris are

in qualitative agreement with Eckart's theory: at relatively low

frequencies decreases rapidly

g

whereas is indepcndent of f

Op
(Ref. 19, p. 1594).

An interesting study has been made
They reviewed experimental results

relation to the Rayleigh criterion

with decreasing f (see Eq. 47),

when f 1is relatively high

by
on
of

(h sin @ < A/8). As most of the data

of v rather than h, they employed

Schulkin and Shaffer (Ref. 72).
backscattering in their
surface roughness

are presented as a function

the Neumann-Pierson surface

wave spectrum for a fully risen sea in order to relate h and v:

5
2h = 4 = 0.0026 v

/2
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Simmary of processes advonced as explanations for observed curves of scattering

coefficient as o function of angle. (From Urick - Ref. 78)
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where H is the mean trough-to-crest wave height (in feet) and

v the wind speed (in knots). Then putting

og = 10 log(f H sin ¢/C)°, (Eq. 52)
they calculated the constants C andi k for a number of cases
[(Refs. 20, 28, 79), plus data from an NDRC report] by drawing the
best-fitting straight line through the data. As a result they

found that b, the most significant parameter, varied between the

values 1 and 2., They concluded that "there is no theory to date to
relate all the backscattering-strength data satisfactorily" (Ref. 72, p. 1703).

The differences in the results of backscattering measurements are

not only caused by differences in technique or in the definition of
O A factor of great importance, which has not always been
recognized by the interpretation of data, is the state of development
of the sea surface, which strongly influences the scattering and
reflection properties of the sea surface. More details can be found

in Section 4.8.

An operational model for sea surface roughness and acoustic
reverberation, in which the theory of ocean wave spectra has been
applied extensively, has been presented by Martin (Ref. 55). He
distinguished scattering and reflection, more or less corresponding
to Urick's regions II and III, and combined them into a "total

reverberation coefficient". '"The model, which has a physical basis over
the whole range of incidence angles, is uncertain in its application mainly in
present <nowledge of the statistics of surface elevation and of derivatives,

yet correlates available experimental data about as well as other attempts.

"There {s apparently a physical basis for an upper limit of sea surface diffuse-
scattering strergth (as contrasted to reflecticn strength) at large wind

speeds but in the absence of white-caps and foaming. However, at high enough
frequency (kitceycle per second range) and low enough wind spead (5 kn or less),
scattering strengths may be 10 dB or more below this limit, especially at

small grazing angles. As scattering strengths aprroach this limiting value
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owing to increasing win:! speed, there is a rapid (fourth powsr) increase with
wind speed., The frequency effect on scattering strengths is less pronounced
than wind-speed effect, there being at most only a moderate decrease (invarse
square root) with increasing frequency at low wind spseds. Surface specular-
reflection strengths appsar to be greatly larger at near-normal incidence than
diffuse-scattering strengths; a maximum of reflection strength at moderate
wind speed, with limiting values at very low and very high wind speeds,
appears clear, but frequency dependence theoretically deveioped cannot yet be

proved by expsriment", This quotation from Martin's study (Ref. 55,
pp. 706, 707) illustrates the complexity of the phenomenon of sea

surface backscattering, and the role of the various parameters.
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4. COMMENTS ON SPECIAL SYBJECTS

4.1 Introduction

The subjects discussed in the previous chapter can be considered

to be the main currents in the literature.

There are, however, a number of studies that only touch these basic
subjects in passing, or that concentrate on a very special aspect.

These papers will now be considered.

The last section in this chapter has an oceanographic, rather than an
acoustical character, as all the others have, since it deals with

the spectrum of the surface waves, and with their height and slopes.
But these subjects play an important part in many papers: the

height and slopes because they characterize the surface roughness,
the wave spectrum because it provides the most realistic way to
obtain an expression for the correlation function of the surface

irregularity.

4.2 Amplitude and Phase Fluctuations

" The reflection of an acoustic signal from an uneven, time-variant surface leads
to variation in the signal form. For a monochromatic wave these variations

appear as amplitude anc phases fluctuations" (Ref. 21, p. 88).

In previous sections we have seen that for relatively smooth

surfaces the total scattered field Py can be separated into a
specularly reflected wave P and a diffusely scattered wave Pg:
Formulae for r_  and p_  can be obtained (for instance from Eq. 42),

by taking the first two terms of the power series expansion of

e~1KYC,  The ratio ps/pr is hence a known quantity.

Expressing the pressure p in amplitude and phase (p = Aeiw) and
following Chernov's almost classical work (Ref. 3), amplitude and

phase fluctuations can be defined as

P p
%3 = Re( .l;.:l'), 8y = Im(;:-) (Eq. 53)
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where it is supposed that |ps|<<|pr|' This definition is employed
by Gulin and Malyshev (Refs. 30, 31, 32, 33, 34) for the surface

diffraction,
An important role in these papers, and also in the work of

Smirnov and Tonakanov (Ref. 74), is played by the Rayleigh roughness

parameter Y3

X = 2kh sin ¢ (Eq. 54)
(cf Eq. 9).

Gulin started with the Helmholtz integral in the theoretical part

of his work (Refs. 30, 31, 33) and used both the Kirchhoff approximation

(Refs. 30, 31) and the method of small perturbations (Ref. 33). 1In
the latter case the spatial correlation of the fluctuations was
studied. Comparison with experimental data has been made in

Refs. 32. 34.

Two different surface correlation functions appeared in the theory:

§ (2) = h® exp(-g2/a®?) cos (Kg) (Eq. 55)

and
%,(8, n) = h® exp[-(83+n?)/a?]; (Eq. 56)

§, is an approximation for a quasi-harmonic surface ("swell"),
3, for "sea". Together with these functions the wave parameters

D and D are used:
X Yy

D, = kasin®g , Dy = ka? (Eq. 57)
R, Ro

The transnitter and receiver are lying in the plane y = 0,
Ry, is half the distance between them via the specular path,
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Two regicns of Dx are considered: either much smaller than unity,
or much larger. The physical significance thereof is that a, the
effective surface correlation distance, is either much smaller

(Dx << 1) than the projection in X-direction of the diameter of the
first Fresnel zone along the propagation path (i.e. ,/2XR,/sin @),

or much larger (Dx >> 1),

If Lx, Ly are the dimensions of the insonified surface area, and
Opo OW the standard deviations of the fluctuations as defined in
Eq. 53, then the results for one receiver can be summarized as

follows., Similar conclusions are drawn in Ref. 74.

a) The quasi-harmonic surface §, gives for D << 1, a op
and ow that are approximately equal, and proportional with
frequency for high frequencies (Ref. 30).

b) The Gaussian surface § also predicts for D << 1
equality of ¢, and UW (Ref. 30); for low frequencies

3 2 2 1 43,3500

showing the same frequency dependence as the Eckart theory
(see Eq. 47), but for high values of f there is still a frequency

dependency, in contrast to Eckart:

Op= Oy = X/af2 (Eq. 59)

This last result, indicating a diffraction grating, has also been
found experimentally for |x| < 0.7 (Ref. 32).

For large values of Dx( >> 1) "the amplitude fluctuations are an ordsr

of magnitude smaller than the phase fluctuations" (Ref. 30), but still
proportional with Y.

70

o

Pt A

v i din W o AR T WGk i



R e i a

c) The probability density function for the amplitude,
calculated from experimental data (Ref. 32), ("swell", y > 1,
pulsed CW), confirmed the results of Pollak (Ref. 67) and D'Antonio
and Hill (Ref. 25), who obtained approximately a Rayleigh curve.

For ¥ < 1 a Gaussian curve was found to be a good approximation.

d) Time autocorrelation functions, calculated with the same
experimental data (Ref, 32), indicated for y < 1 a decaying

periodical behaviour, comparable to 3,.

A sinusoidal surface, moving with constant velocity, has also been
analyzed (Ref. 31). Rayleigh's theory ic used (m = -1, 0 and +1).
For yx <« 1, Oa and o© have the same period as the surface wave;
their magnitudes are eaual and proportional to Y. The maxima of

Op coincide with the minima of UW’ and vice-versa,

As for the spatial autocorrelation, these have been studied
theoretically (Ref. 33) and experimentally (Ref. 34). In these
papers T and K (i.e. the first receiver) are placed in the

plane y = 0, at depths z and Zp> and at a horizontal distance ¢{

T
that is not smaller than =z or zp. The surface is of the quasi-

harmonic type, characterizez by a correlation function similar to
§,, but the waves travel in a direction that makes an angle g
with the X-axis. Only correlation distances much smaller than 4
have been considered and ¥ was assumed to be less than unity.

Three cases have been treated:

a) Correlation in X-direction

For surface waves in X-direction (a = 0) and D, >> 1 correlation

functions BAA(px) and B are predicted that have a shape

M(px)
similar to §,. The effective correlation distance a, defined
with B(ax)/B(O) = e'l, depends on the geometry but is larger than
a in most cases. Experiments confirm this (Ref. 34). 1If

Dx <<1 and K/k << 1 the normalized autocorrelation functions beccme

'a@

-02
Bualoy) = Byy(oy) = ,1[1 + e Px /% cos “‘Ox)] (Eq. 60)

which assumes the value ) for p >> a.
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b) Correlation in Y-direction

The case @ = n/2 and D, >> 1 yielded results similar to @).

The interesting case @ = 0, however, has not been considered.

c) Correlation in Z-direction

With ¢ =0, D _<< 1 and K/k << 1 the correlation functions

become

BAA( pz) ~t wa( Dz)

~ 31+ exp(- ;é;;) cos (pzv§§>] (Eq. 61)

so that the correlation in Z-direction decreases much faster than
in X-direction., This has been observed at small grazing angles
for B,, (Ref. 34).

An impertant conclusion can be drawr. firom all these cases: both
theory and experiment demonstrate the presence of a distinct
correlation bz.ween the scattered field at cne or more receivers and
the state (period, roughness) of the diffracting surface. For the
reflection coefficient, such a correlation has not beern found

(see Liebermann's third conclusion, Section 3.5.1).
An extension of Gulin's paper (Ref. 33) to the case of a narrowband
signal has been published by Chuprov (Ref., 21). His results are

closely related to Gulin's.,

4.3 Surfaces with Two Types of Roughness

At the surface of the ocecan the roughness can very often be

considered as a superposition of several types of roughness:

" the typical sea surface is comprised of "swell", “sea" and "ripple" »

(Ref. 35. p. 599). In two papers a model with two types of roughness

(large-scale plus small-scale) has been developed.
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Kur'yanov (Ref. 50) supposed the two types to be uncorrelated. The
small-scalie irregularities have been assigned a correlation function
8(p) = 2 I,(p/C)/(p/C), where I, is a modified Bessel function.

" The choice of this form of correlation function has no particular significance,

but it considerably simplifies the subsequent calculations " (Ref. 40, p. 254).

For the coarse surface a sinusoidal and a random one with Gaussiun
correlation function were taken, In both cases a factor Q was
calculated that expressed for a plane wave with grazing angle ¢
the difference between scattered intensity from the small-scale
irregularities on the coarse surface and that from the small
irregularities on a flat plane, This factor is about 1 for @,.,90°,

but increases rapidly for g < 60°.

More realistic is the paper by Hayre and Kaufman (Ref. 35). These
authors considered correlated roughnesses, with a normal distribution
(four-dimensional), representing a statistically isotropic surface.
They calculated the mean scattered power in an arbitrary direction
when a plane monochromatic wave was incident. For a slightly rough
surface this scattered power contains two terms: a specular and a
diffuse one, the latter containing the effect of both types of
roughness plus their combined effect, in a rather complicated way.
These effects are expressed in second order quantities (variances
and correlation coefficients). A moderately rough surface produces
additional terms of a more complicated structure. The result of the
last case, the "extremely" rough surface (but the Kirchhoff
approximation is used and hence the surface cannot be too rough),
can be interpreted as if the surfaces consisted of th.ee independent

processes: 8small-scale, large-scale and a combined roughness.

4.4 Surfaces with a Sublayer

Below a wind-driven surface air bubbles are often formed. Moreover,
at sea sound speed can vary with depth and biological objects can

also be present just below the surface. Consequently the scattering
of sound waves from the boundary can be accompanied by a sub-surface

scattering.
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In particular, Russian authors have tried to find out under what
contlitions this layer effect can become so important that it "screens"
the surface scattering. In most cases this is done via a modified
Rayleigh approach. Glotov and Lysanov (Ref. 29) assumed a homogeneous
layer of air bubbles whose diameters are small compared with the
Lysanov (Ref. 46) characterized the inhomo-

and also studied the

effect of a layer for which the sound speed is a function of depth
(Ref. 47):

incident wavelength,

geneous layer by the index of refraction y(z)

Co

J/1- 6(z-3)

c(z) = (z < A). (Eq. 62)

In this last case the scattering possesses a resonance character:

the reflection coefficient shows peaks " wherever the scattered wave

turns out to be a matural vibrational mode for the given layer " (Ref. 47, p. 70).

The results of the work of Glotov and Lysanov (Ref. 29) have some
interesting aspects. The authors assume a statistically homogeneous
layer of small air bubbles from the boundary down to a depth

z = A, on which a plane wave is incident witih grazing angle .

The concentration of air bubbles is characterized with a narameter ¢.

As for the "screening" effect they found:

a) If |Isin ¢| << ¢/k the impedances of homogeneous medium
and inhomogeneous layer are so different that total reflection takes
is then

place in the plane The reflection coefficient V

completely determined by the properties of the lower boundary.

Z=A.

b) For |sin ®| >> e/k " the absorption of sound in the layer before

reaching the uneven surface is very great. As oppossd to the preceding case,
scresning is now caused by the strong absarption of sound in tha layer, with

reflection at the lowsr boundary almost totally absent® (Ref. 29, p. 362).
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c) In the intermcdiate region the surface has to be described

in more detail. Taking a periodically random surface with correlation
function

8(8) = h® exp(-£2/a®) cos (KE) (Eq. 63)

and assuming that (K/k)? << 1, Ka >> 1 they calculated the
reflection coefficient V as a function of ¢/k for several layer
thicknesses A. The result is shown in Fig. 16 with k = 40 m-l

(f = 10 kHz), K = 0.63 m~', h® = 0.1 m® and sin g = 0.01

(i.es @~ 0.6°). The curves clearly underline the remarks made in
(a) and (b).

4.5 "Doppler" and Other Frequency Effects

Many papers deal with surfaces that are independent of time. But a
simple observation at sea shows that a realistic description of its

surface is not possible without introduction of the time variable,

Because of the time-dependency of the ocean surface the transmission
of a monochromatic wave results in a received signal that shows
random fluctuations in amplitude and phase, when they are recorded

as a function of time (see also Section 3.5.1).

Such a signal suffering from amplitude and phase fluctuations

" can be thought of as being a carrier that is simultaneously amplitude and

phase modulated by a random signal. Use of the term "modulation" is justified,
since the highest significant frequency components of both amplitude and nhase

are small as compared to the carrier frequency * (Ref. 25, p. 706).

Since the phennmenon is due to movement of the surface ¢lements the

terms "Doppler effect" or "frequency smear" are also used.

Rojas (Ref, 71) expressed the surface movement as a change in the
length of the propagation path. He assumed that this quantity can
be represented by a Gaussian process, In his very straightforward
approach the carrier is only phase modulated, again with Gaussian

distribution. He calculated the power spcctrum of the return signal
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and found it to be Gaussian shaped and centred at the original

|

frequency. His formulae hold only for (near) normal incidence, but
the influence of a different geometry could have been incorporated

easily, with similar results.

When a sinusoidal surface (wave number K) moving with constant
speed v is considered, as has been done by Gulin (Ref. 31), the
scattered waves of order m are Doppler shifted over a frequency wp

that is given by:
w, = mKv (Eq. 64)

It follows from this formula that the specularly reflected wave
(m = 0) is not influenced by the Doppler effect. This is correct,

as the specular reflection comes from the "average" (flat) surface.

This case may seem somewhat theoretical since the ocean surface has
a spectrum of sinusoidal waves rather than a single wavelength,

But Liebermann stated that "monochromatic radiation will be preferentially

scattered according to the familiar diffraction grating formulan (Ref. 42,
p. 932): for a given geometry the scattering of a monochromatic

wave is mainly produced by the surface wave of length p, where

. . -1 .
A= x(sxn 8 1 + sin eout) , (Eq. 65)

i.e. the scattering has a resonant character. This fact is also

expressed by Eqs. 19 and 47.

Measurements made by Liebermann (Ref. 43) have confirmed his

statement, and formulae derived by Marsh also indicate that
'Ehe revarberation spectra will be narrow and centred at freguencles

w o ow" (Ref. 53. p. 1836).

Parkins (Ref. 65) recently calculated the spectral density of the
waves scattered from a Gaussian surface described by the Neumann-

Pierson directional wave spectrum. Two cases have been considered:
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the slightly rough surface (lox frequencsy or low sea state) and the

very rough surface (high frequency or high sea state). "The
reradiation from a surface only slightly rough is found, expectedly, to be
principally a reflection; the departure from this has been shown to be caused

by the surface roughness of propagating gravity waves., For a very rough

surface, there is diffuse scattering that causes the spectral line of the
reflection to broaden into a Gaussian curve which shifts and changes in width with

sea state and the angles of incidence and observation" (Ref. 65, p. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>